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Abstract. We prove that the negative resonances of the Chazy equation (in the sense of Painlevé
analysis) can be related directly to its group-invariance properties. These resonances indicate
in this case the instability of pole singularities. Depending on the value of a parameter in
the equation, an unstable isolated pole may turn into the familiar natural boundary, or split
into several isolated singularities. In the first case, a convergent series representation involving
exponentially small corrections can be given. This reconciles several earlier approaches to the
interpretation of negative resonances. On the other hand, we also prove that pole singularities
with the maximum number of positive resonances are stable. The proofs rely on general
properties of nonlinear Fuchsian equations.

1. Introduction

The method of pole expansions is a versatile tool for the investigation of singularities of
ordinary differential equations (ODEs) and partial differential equations (PDEs). Going
as far back as the work of Briot and Bouquet, and Kowalewska, this method acquired
new significance when it was found that symmetry reductions of equations integrable by
inverse scattering usually have the Painlevé property in the strong sense: all of their
movable singularities are described by the method of pole expansions [3, 4]. Conversely
the inverse scattering transform suggested new approaches to the study of the Painlevé
equations themselves.

We are interested in the case of the Chazy equation

y ′′′ − 2yy ′′ + 3y ′2 = 0 (1)

where this method apparently fails to provide information on the general solution of the
equation under consideration, because the pole expansion has fewer free parameters than
the order of the equation, and therefore does not seem to represent the general solution. The
simplest issue is this: the Chazy equation has order three and possesses the exact solution

−6/x.

However, this is, up to translations, the only solution with a simple pole. The ‘pole
expansion’ reduces in this case to its first term. This solution should be embedded in
a three-parameter family of solutions: the fact that there is only a one-parameter family of
solutions with simple poles shows that simple poles areunstable under perturbation,but
does not give further information. (More background information on the Chazy equation
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is given in section 1.3.) Kruskalet al (see [18, 27]) suggested that the failure of the
pole expansion was due to the omission of exponentially small terms in the expansion of
the general solutiony(x). Furthermore, this representation should not be valid in a full
neighbourhood ofx = 0 in general, but only in a sector, as in the case of expansions
near an irregular singular point. It turns out in this case that the expansion in powers
of exponentials is convergent, which is not expected at an irregular singularity. On the
other hand, the perturbative approach [14, 17] shows that there is a formal series solution
y(x; ε) = y(x)+ εy1(x)+ · · ·, which does contain the full number of arbitrary parameters.
Also, the perturbative approach accounts for the apparent paradox that the solutions of the
linearized equation have solutions which are more singular than any actual solution of the
equation: they are related to the variation of free parameters in the general solution, at a
fixed location away from the singularity. However, all of the terms in the expansion in
powers ofε have only power singularities, and do not contain exponential terms. There is
also no indication that the actual solution cannot be continued around the singularity.

Another difficulty comes from the general ‘class XII’ equation of Chazy:

y ′′′ − 2yy ′′ + 3y ′2 = E(6y ′ − y2)2 (2)

whereE = 4/(36− k2), with k > 0, omitting the ‘complementary terms’. This equation
has the same special solution, but the general solution can be completely different, and
is in fact rational for some values ofk. It is possible for the simple pole to split into
two or more poles by perturbation. This effect cannot be captured adequately in a series
representation in powers ofx: take a solution with two poles atx = 0 andx = α. The
radius of convergence of a pole expansion aroundx = 0 cannot be greater than|α|, and
therefore tends to zero if there is a confluence of the two singularities (α → 0). The
perturbative approach can correctly describe what happens at a fixed location away from
the singularities, but its asymptotics asx → 0 do not describe the singularity correctly. This
can be seen in the treatment of the first example of [14, section 5] where the confluence can
only be ascertained by explicitly summing the pole expansion.

We address these difficulties as follows.
(i) In considering the perturbative solutiony(x; ε), it is not permissible to exchange the

limits x → 0 andε→ 0. This explains why no exponential terms are generated there.
(ii) To recover the results of the perturbative approach from the exponential expansion,

it is necessary to vary the free parameters in a very particular way, which we relate to the
group invariance of the Chazy equation.

(iii) It is possible to describe confluence phenomena analytically by means of a Cole–
Hopf transformation: ifu(x; ε) is an analytic family of functions where a pair of simple
zeros coalesces atx = 0, the family u′/u has a confluence of poles. Note that we can
allow u to be analytic in both arguments, whereas the pole expansion ofu′/u would have
a vanishingly small radius of convergence, as explained above.

It is convenient to describe all of the above issues as relating to the stability of singular
behaviour, because of the close similarity to the stability of solitary waves in nonlinear
wave equations. Note that some authors (in particular, Bureau) define a ‘stable equation’ as
one which possesses the Painlevé property. We are interested in a different issue, namely
whether the leading asymptotics of a particular solution of an ODE or PDE are stable under
perturbation of the solution. Consider, for instance, real-valued solutions of the equation

utt − uxx − uyy = eu

which has the special solution eu = 2/t2; then [22] all nearby solutions are such that eu has
an expansion in powers ofT andT ln T , whereT = t − ψ(x, y), with ψ small, and the
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first term is ln(2/T 2). It is not possible to exclude logarithms in general, but the leading
order of the singularity remains the same. The singularity of the solution ln(2/t2) would
be termed ‘stable’ in the sense of the present paper.

The main technical tool in the proofs of our results is the Fuchsian algorithm ([20, 24]
and earlier references therein). The basic step is to show that the method of pole expansions
for ODEs or PDEs amounts to seeking solutions of a nonlinear ordinary or partial differential
equation with a regular singularity, which may include logarithmic terms. As far as the
present discussion is concerned, note that several authors (in particular, Bureau, see also
Conteet al [14]) have identified ARS-WTC resonances with the indices of a linear Fuchsian
ODE, and have observed in many cases that the linearization of the equation itself is
Fuchsian. On the other hand, we have shown, see for example [24], that under very general
circumstances the equation itself can be reduced to a nonlinear Fuchsian ODE or PDE,
without linearizing. We have also shown that the initial-value problem for a Fuchsian
PDE can be solved in both the analytic and non-analytic cases. The Chazy equation itself
can be reduced to Fuchsian form in several different ways, see the proofs of theorems 7
and 8, later. The Fuchsian algorithm is not restricted to ‘integrable’ problems, but is in
fact useful in analysing singularity formation in more general nonlinear wave equations,
see [20, 22, 23]. Of course, in the linear case, none of the above issues arises: if a linear
equation has solutions with leading orderxν1, xν2, . . . , the general solution is simply a linear
combination of these, and its singular behaviour is apparent. Confluence of singularities
of linear Fuchsian equations involves varying the coefficients of the equation, rather than
perturbing one solution of a fixed equation.

1.1. The method of pole expansions

The principle of the method is familiar: given an equation, substitute for the unknownu a
series of the form

u = xν
∑
j>0

ujx
j (3)

and identify like powers ofx. This determines firstν andu0, hence theleading balance
u ∼ u0x

ν . The other coefficients are usually determined by a recurrence relation of the
form

Q(j)uj = Fj (u0, . . . , uj−1). (4)

The zeros ofQ are calledresonances.
WhenQ(j) = 0 andFj also vanishes, the coefficientuj is arbitrary. IfQ(j) = 0 butFj

does not vanish, the series (3) must be corrected by the addition of logarithmic terms, and
one can predict their form rather precisely [24]. The requirement that no logarithmic terms
are needed sets rather strong constraints on the equation; this observation was one of the
ingredients of the ‘Painlev́e test’ in its original form, because many symmetry reductions of
integrable equations do have this property. We do not discuss the modern status of this test,
referring the reader to recent reviews [2, 21, 26–28] and their references. The method can
be extended to partial differential equations, in which case it is known as the WTC method
[24, 35].

Therefore, as far as this paper is concerned, the upshot is that singularities of the form (3)
are expected to be stable under perturbations, in the sense defined in section 1.2, provided
that the series (3) has the maximum number of arbitrary constants in it: any nearby solution
must have a singularity of the same type, with a possible shift in location.
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1.2. Stability of singular behaviour

The stability of a singular solution will be defined by analogy with the case of orbital
stability of solitary waves in translation-invariant problems: a solitary waveu is (orbitally)
stable if any perturbation of the initial condition for a solitary wave generates a solution
which remains close to the orbit ofu under translations. Thus, in the case of the Korteweg–
de Vries (KdV) equation, an initial condition close to a one-soliton leads to a solution which
remains close to the set of all translates of this soliton (see Strauss [32, 33], Bonaet al [6]
for the KdV case, and their references; further results for KdV-like equations are also found
in [29]).

We encounter a comparable situation for movable singularities of differential equations:
if an equation is translation-invariant, we expect that a small perturbation of any solution,
in a domain away from the singularity, will in general result in ashift in the singularity
location. This should be distinguished from a possible change in the type of singularity.

As an example with a simple closed-form solution, consider the equation

du/dx = 2xu2

and let us focus on real solutions to fix ideas; a similar discussion could be made for
complex solutions as well. The general solution is

u(x) = 1

c − x2

wherec is a real constant, and we consider small values ofc. If c is positive, we have
two stable single poles: a slight change in the value of, say,u(1) = 1/(c − 1), results
in a small change in the value ofc, and hence in a small shift of the pole. However, if
c = 0, we obtain an unstable double pole forx = 0, because a small change in the value
of u(1) causes the pole either to disappear or to break up into two simple poles, depending
on whetherc becomes negative or positive.

In the Chazy case, we will be interested in the stability of exact solutions of the form
a/x in some fixed diskD around the origin. Fix also some non-zero valueξ in D. We
will say that the singularity is stable ifany solution with Cauchy data atξ close to those
of a/x has an expansion

a/(x − x0)+
∑
j>0

uj (x − x0)
j

valid in D. We could allow logarithmic terms in the series, but they will not be needed.
We, therefore, require a simple pole to perturb to another simple pole. An example of an
unstable situation would be the case in which a small change in the data atξ causes the
pole to turn into a natural boundary, or to split into several poles.

1.3. The Chazy equation

We recall here some background information on equation (1). The Chazy equation came up
in the course of Chazy’s extension of Painlevé’s program to third-order equations [10–12]. It
is actually one of the ‘class XII’ equations (2). It is closely related to a system considered by
Halphen, and its general solution can be parametrized using the solutions of a hypergeometric
equation ifk > 0, and the Airy equation ifk = 0 (see Clarkson and Olver [13], Ablowitz
and Clarkson [2], and their references).

The modern interest in this equation comes from the fact that it arises as a reduction of
the self-dual Yang–Mills equations with an infinite-dimensional gauge [1, 2, 9, 34]. It arises
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in connection with one of the special reductions of Einstein’s equations in a Bianchi IX
spacetime. It can be given a commutator representation. A particular solution is

1

2

d

dx
ln1(x)

where1(x) is the discriminant modular form (see Takhtajan [34], Bureau [7, 8] and Chazy
[12] for the relation to modular forms, and Koblitz [25] for background material on modular
forms). This solution has the real axis as a natural boundary. It generates a three-parameter
family of solutions through an SL(2) action which maps solutions to solutions: more
precisely, ify(x) is a solution, so is

ad − bc
(cx + d)2y

(
ax + b
cx + d

)
− 6c

cx + d (5)

for any choice of the complex parametersa, b, c andd, subject toad − bc 6= 0. There are
effectively only three parameters, since scaling the parameters by a common factor does
not generate a new solution. The transformed solution has, in general, a circular natural
boundary. The relation of the Chazy equation to the Schwarzian derivative and invariants
of SL(2) actions was elucidated by Clarkson and Olver [13], who showed how to use the
group action to obtain the general solution, despite the fact that the symmetry group is not
solvable.

On the other hand, the method of pole expansions generates exact solutions which have
no natural boundary at all, namely

− 6

x − x0
+ A

(x − x0)2

whereA andx0 are arbitrary. This is a two-parameter deformation of the solution−6/x.
The problem is to decide the stability of the solution−6/x.
A similar problem arises for the general class XII equation, for which we have the

solutions [12, 31]

k − 6

2(x − a) −
k + 6

2(x − b)
wherea and b are arbitrary. One recovers the solution−6/x by confluence ofa and b.
The resonances corresponding to the singularitiesa andb are (−1, 1, k) and (−k,−1, 1),
respectively.

1.4. Earlier approaches

1.4.1. Linearization. The method of Fordy and Pickering [17] considers perturbations of
the solution−6/x of the form

−6

x
+ εu1(x)+ ε2u2(x)+ · · · (6)

and shows that one can compute theuk recursively by solving linear equations involving
the linearization of the Chazy equation at the reference solution−6/x. This linearization
reads

(D + 2)(D + 3)(D + 4)v = 0

whereD = x d/dx, and the corrections are sums of increasingly high powers of 1/x andx.
The advantage of this method is that the new series does contain three arbitrary

parameters, which can be identified with the three parameters required to describe the
general solution of the linearized equation.
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The solutions of the linearization are more singular than−6/x, but this does not mean
that the equation itself has more singular solutions: for example, we have

− 6

x − ε = −
6

x
(1+ ε/x + ε2/x2+ · · ·).

Since the series converges only for|x| > ε, the series does not provide information on
the behaviour of this solution asx approaches zero. In fact,x = 0 is a regular point for
ε 6= 0. Similarly, the series (6) is not expected to converge forx and ε small without
any further restriction, since this would predict that pole singularities perturb to Laurent
expansions defined in a full neighbourhood ofx = 0, and such expansions do not allow for
the formation of a small natural boundary near the origin.

1.4.2. Exponentially small corrections.Kruskal considered the general solution as a
perturbation of the solution−6/x + A/x2. In this case, the linearized equation reads

(x(D + 4)− 2A)(D + 2)(D + 3)v = 0

where againD = x d/dx, and has therefore anexponential solutionwhich involves
exp(−2A/x). The appearance of non-Fuchsian terms was to be expected from the fact
that the leading balance, for a second-order pole, does not involve the top-order derivatives.
He derived systematically a representation of the general solution in the form

−6

x
+ A

x2
(1+ k exp(−2A/x)+ · · ·)

which, after including a parameter for translations, contains three parameters, but is defined
at best in a sector in which the exponential is small. This sector has maximal angleπ ,
and this restriction corresponds to the fact that the solution cannot be continued around the
singularity atx = 0 in general, but has a natural boundary which is a circle (or a line)
throughx = 0.

This representation can be checked directly in this special case using the general solution
[2]. One can see by inspection that, asA approaches zero, the natural boundary is a small
circle which shrinks to a point.

However, it is not clear how to account for resonance−3 in this context, even though
the solution thus obtained does contain three arbitrary parameters. Indeed, if we differentiate
the expansion with respect toA or k and setA = 0, we cannot generate a function with a
fourth-order pole at the origin, as was possible in the linearization approach. As we will
see, it is possible to recover the fourth-order pole by using asimultaneous variationof all
three parameters.

1.4.3. Remarks. Two other approaches to the interpretation of missing parameters in pole
expansions are as follows.

(1) The fact that some equations have two Painlevé series with leading orders of the
form a/x andna/x wheren is an integer suggests that the second series results from the
confluence ofn singularities of the first type (see Adler and van Moerbeke [5], Ercolani
and Siggia [15], Flaschkaet al [16], among others). However, as noted previously, it has
remained difficult to obtain an analytical representation of confluence, because the pole
expansion near one of the singularities has a shrinking radius of convergence.

(2) It is possible to seek solutions in powers ofs = 1/x rather thanx. In this case,
negative resonances become positive resonances of the equation in thes variable. Such a
series already appears in Chazy [12]. However, this solution is only defined forx large,
and there may be one or more natural boundaries which separate the domain of existence
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of this solution from the origin. Also, this interpretation is not applicable if there are both
positive and negative resonances.

1.5. Results of this paper

The necessary reconciliation of the linearization and exponential approaches, for
equations (1) and (2) fork = 2, 3, 4 and 5, is obtained through the following results.

(a) Theorems 1 and 9. Pole expansions with the maximum number of arbitrary
parameters represent stable singularities. This applies to the solution(k − 6)/2x.

(b) Theorems 2–4. Any equation with the group invariance property of the equation (5)
has a one-parameter family of solutionsy(x; ε) such that

y(x; 0) = −6

x

∂y

∂ε
(x; 0) = constant× x−1+r

for each negative resonancer (i.e. for r = −1, −2 or −3). The perturbative expansion
follows. This argument applies to both (1) and (2).

(c) Theorem 5. Conversely, if an equation has solution−6/x, it cannot have the SL(2)
action (5) if the resonances do not include−1,−2 and−3. The existence of a full expansion
of y(x; ε) also follows from our proof.

(d) Theorem 6. If there is a solution with branching involvingxk, the group invariance
proves the existence of pole-like singularities with resonances−1 and−k.

(e) Theorem 7. In the case of (1), asε increases from zero, the isolated pole is unstable
and becomes a circular natural boundary of small radius. However, the general solution is
still described in terms of a convergent series of exponentials; this follows from the fact that
even though the linearization of the equation can be non-Fuchsian, there still is a reduction
to a nonlinear Fuchsian equation.

(f) Theorem 8. In the case of (2), fork = 2, 3, 4 and 5, the isolated pole does not
turn into a natural boundary, but rather splits into a finite number of poles. However, the
confluence pattern is restricted: all poles except one at most must coalesce. If all confluence
patterns had been allowed, the resonances of the solution−(k+6)/2x would have included
all the negative integers from−k to −1. The confluence is described analytically by
representing the solution in terms ofu′/u, whereu is analytic in a fixed domain which
includes all coalescing singularities.

2. Nonlinear Fuchsian equations

We collect here a few results on Fuchsian equations which are used later. We also include a
proof of the stability of polar singularities with the maximum number of arbitrary coefficients
in their expansion (3), which is similar in spirit to, but considerably simpler than, the result
of [22], because of the fact that we are dealing here with an ODE rather than a PDE.

2.1. Existence results for a Fuchsian ODE

A nonlinear Fuchsian equation has the general form

P(D)u(x) = xF [x, u,Du, . . . ,Dm−1u] (7)

whereD = x d/dx, andP is a polynomial of degreem. There are similar definitions and
results for systems, but they will not be needed here.

If the zeros ofP all have negative real parts, there is precisely one solution of this
equation which vanishes forx = 0, and it is given by a convergent series in powers ofx
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nearx = 0. The proof is by iteration in a space of analytic functions, and is in this sense
constructive. In particular, it could in principle be used to generate the coefficients of the
expansion of the solution, but it is in practice quite cumbersome to do so.

The convergence of WTC expansions follows from the fact (see [21]) that it is possible
to allow u to depend on additional ‘transverse’ variables, provided that spatial derivatives
terms are multiplied by appropriate powers ofx, see [20, 24]. This condition is satisfied in
a remarkably large number of cases.

We will meet in section 3 an equation of the form

P(D)Du = xF (8)

whereP andF are as above. To reduce this situation to the the case of (7), let us write
u = a + xv(x), wherea is arbitrary. One can write

xF = xF [0, a,0, . . .] + x2G[x, v,Dv, . . . , Dm−1v]

for some functionG. The equation now becomes, after division byx,

Q(D)v := P(D + 1)(D + 1)v = F [0, a,0, . . .] + xG
where the zeros ofQ all have negative real parts. We now replacev by v−b, for a suitable
constantb, to annihilate the first term on the right-hand side. In this way, we reduce the
problem to an equation of the form (7), and we conclude that there is a unique solutionv

which vanishes at the origin. Therefore, for anya, there is a unique analytic solution of (8)
which satisfiesu(0) = a.

2.2. Stability and parameter dependence

We now prove a stability result for pole singularities of an equation with the maximum
number of coefficients in their pole expansions. This result makes rigorous the intuitive
argument to the effect that a series which contains as many free parameters as there are
Cauchy data must represent the general solution locally.

To prove the result, one must show that these parameters are not redundant. We
achieve this by a reduction to the implicit function theorem. An example of a redundant
parametrization is the two-parameter family of series:

u(x; ε, η) =
∑
j>0

ηj

(x − ε)j+1
. (9)

The parametersε andη are redundant, becauseu(x; ε, η) = 1/(x − ε− η): the pairs(ε, η)
with the same value ofε + η all define the same function.

To fix ideas, let us consider an autonomous equation of the form

(d/dx)mu = f (u, . . . , u(m−1)) (10)

wheref is, say, a polynomial.
Let u(x − x0, c1, . . . , cm−1) be a family of solutions, which depends analytically on

(x0, c1, . . . , cm−1) for |x0| and |ck| < a and 0< |x − x0| < b, for some positivea andb.
We have the following result.

Theorem 1.Assume that∂u/∂x0, ∂u/∂c1, . . . , ∂u/∂cm−1 form a linearly independent set of
solutions of the linearization of (10). Thenu(x− x0, c1, . . . , cm−1) is a local representation
of the general solution. In particular, the assumption holds for any pole expansion with the
maximum number of parameters ifν 6= 0.
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Remarks. (1) If ν = 0, we are in the case of the Cauchy problem, and the series for
the solution containsm + 1 parameters, namely the location of the initial point and them

Cauchy data. These data are clearly redundant.
(2) In the case of (9), the representation is redundant because∂u/∂ε = ∂u/∂η.

Proof. Consider the reference solutionU = u(x, 0, . . . ,0) for definiteness. Given any point
x1 with 0< |x1| < b, we consider

ϕ : (x0, c1, . . . , cm−1) 7→ (u(x1), u
′(x1), . . . , u

(m−1)(x1))

whereu(x1) = u(x1 − x0, c1, . . . , cm−1), and similarly for the derivatives ofu. Applying
the inverse function theorem to this map near(x0, 0, . . . ,0), we conclude that any set of
Cauchy data close to the data ofU at x1 coincides with the Cauchy data of a member of
our family; this proves the first statement.

To prove that the linear independence condition holds in the context of the theorem,
it suffices to consider the familyu(x − x0, c1, . . . , cm−1), where thecl ’s are the arbitrary
coefficients in the expansion ofu. The functions∂u/∂x0, ∂u/∂cl are derivatives of families
of solutions, and are therefore themselves solutions of the linearized equation. It is easy to
see that these derivatives all have different leading behaviour atx = x0, and are therefore
linearly independent. �

3. The transformation formula and negative resonances

3.1. Statement of results

Consider any equation which admits the transformation formula (5). Assume that any
uniform limit of analytic solutions is also a solution. This assumption is clear for ODEs;
it will allow us to extend (5) to some cases when the transformation(ax + b)/(cx + d) is
non-invertible, by viewing it as a limit of invertible transformations.

Let y(x) be any solution. We wish to prove that there are families of solutionsy(x; ε, r)
such that

y(x; 0, r) = −6/x and
dy

dε
(x; 0, r) = x−1+r

for r = −1, −2 and−3. This will account for the three ‘negative resonances’. It will be
apparent from the proofs thaty(x; ε; r) can in fact be expanded to higher order, and that
the coefficients of the higher-order terms are increasingly more singular inx.

We find that the construction is possible provided that it is possible to prescribey, y ′,
y ′′ arbitrarily at one point. This construction precisely fails for the non-generic solutions
−6/x + A/x2. The fact that the resonance structure can be derived on the sole basis of
the transformation formula implies conversely that, if we have an equation with a different
resonance structure, itcannot admit the transformation formula (5).

Fix a solutiony(x) which is analytic nearx = 0. Consider the family

y(x; ε) = − 6

x − η +
µ

(x − η)2y
( −µ
x − η

)
(11)

whereη andµ depend onε, and are assumed to be small asε→ 0. This is a special case
of the transformation (5).

Our results are as follows.
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Theorem 2.If µy(0)− 6η = ε, andµ andη are proportional toε,

y(x; 0) = −6/x and
dy

dε
(x; 0) = 1/x2.

Theorem 3.Assumeµy(0) − 6η = 0, but 6y ′(0) − y(0)2 6= 0. Then, ifµ andη are both
proportional toε1/2, we have

y(x; 0) = −6/x and
dy

dε
(x; 0) = c/x3

wherec 6= 0.

Theorem 4.Assumeµy(0) − 6η = 0 and 6y ′(0) − y(0)2 = 0, but y ′′ − yy ′ + y3/9 6= 0
whenx = 0. Then, ifµ andη are both proportional toε1/3, we have

y(x; 0) = −6/x and
dy

dε
(x; 0) = c/x4

wherec 6= 0.

Theorem 5.If an equation of order three or higher, to which the Cauchy existence theorem
applies, admits the special solutiony = −6/x, and if the linearization of the equation at this
solution does not have 1/x2, 1/x3 and 1/x4 among its solutions, then the given equation
cannot admit the SL(2) action (5).

The restriction that the solutiony(x) be analytic is essential. In fact, we can obtain
quite different results ify admits branching.

Theorem 6.If there is a solution of the formy(x) = x−1h(xk), whereh is analytic,k > 0,
h′(0) 6= 0 andh(0) = (k−6)/2, there exist two families of solutions,y1(x; ε) andy2(x; ε),
such that

y1(x; 0) = y2(x; 0) = −k + 6

2x
and

dy1

dε
(x; 0) = c/x2 and

dy2

dε
(x; 0) = c/xk+1.

3.2. Remarks

(1) If we takey = −6/(x − x0), theorems 3 and 4 do not apply.
(2) If we takey = −6/(x − x0)+A/(x − x0)

2, theorem 3 applies, but theorem 4 does
not. Indeed, in this case,

y ′ − y2/6= −A2(x − x0)
−4/6 (12)

and

y ′′ − yy ′ + y3/9= (d/dx − (2/3)y)(y ′ − y2/6) = A3(x − x0)
−6/9. (13)

It is, therefore, not possible to make (12) vanish without havingA = 0—in which case (13)
vanishes as well. One can rephrase the assumption in theorem 4 by saying that we require
y ′ = y2/6 but y ′′ 6= y3/18, for x = 0.

(3) Theorems 2–4 all apply, for example, when there is a solution for every choice of
y(0), y ′(0) andy ′′(0). The result, therefore, holds for any third-order autonomous equation,
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and hence for both equations (1) and (2) which, as we show in section 4, have completely
different singularity structures.

(4) It follows from theorem 8 that theorem 6 applies to equations (2). A result similar
to theorem 5 could of course be stated for this situation.

(5) An example to illustrate theorem 5 is the equation

y ′′′ = 2yy ′′ − 3y ′2+ cy ′(6y ′ − y2)

which has the solution−6/x, but where the resonance equation is(r + 1)[(r + 2)(r + 3)−
36c] = 0. −2 and−3 are therefore both resonances only ifc = 0. We conclude, without
computing the symmetry group of the equation, that this equation does not admit the
transformation law (5) ifc 6= 0.

3.3. Proofs

Let us begin with a computation which is used in the proofs of the first three theorems.
Any solutiony(x) generates the one-parameter family of solutions

y(x; ε) = − 6

x − η(ε) +
µ(ε)

(x − η(ε))2y
(
− µ(ε)

x − η(ε)
)
.

If x is fixed and non-zero, and ifµ andη are small asε→ 0, we can expand this solution
in the form

y(x; ε) = −6

x
+ µy − 6η

x2
+ µ(2ηy − µy

′)− 6η2

x3

+x−4

[
−6η3+ µ

(
3η2y − 3ηµy ′ + µ

2

2
y ′′
)]
+O(η4, η3µ, η2µ2, ηµ3, µ4)

wherey, y ′, . . . stand fory(0), y ′(0), . . . .
Any such family has the property thaty(x; 0) = −6/x. Furthermore, it is clear that the

above expansion could be pushed to all orders, and that the coefficients of the higher-order
terms contain higher and higher powers of 1/x.

Proof of theorem 2.If we takeµ andη proportional toε, in such a way thatµy(0)−6η ∼ ε,
we have∂y/∂ε = 1/x2 for ε = 0. �

Proof of theorem 3. If we take µ and η proportional to ε1/2, in such a way that
µy(0) − 6η = 0, and if y is such that 6y ′(0) 6= y(0)2, we have∂y/∂ε = constant/x3

for ε = 0. �

Proof of theorem 4.If we takeµ andη proportional toε, in such a way thatµy(0)−6η = 0,
and assume that 6y ′(0) − y(0)2 = 0, but y ′′ − yy ′ + y3/9 6= 0 for x = 0, we find that
∂y/∂ε = constant/x4 for ε = 0. �

Proof of theorem 5.Consider an equationF [u] = 0 of order three or higher with such a
group action. Solving the Cauchy problem, we can construct solutions to which each of
theorems 1–3 apply. Consequently, there are differentiable families of solutionsy(x; ε) as
in these theorems. SinceF [y(x; ε)] is identically zero, we have

0= d

dε
F [y(x; ε)]|ε=0 = F ′[−6/x]

(
dy

dε
(x; 0)

)
whereF ′ denotes the linearization ofF . We conclude that this linearized equation must
admit the three solutions 1/xm, m = 2, 3 and 4. If these three functions do not solve the
linearization, there can be no such group action. �
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The specific coefficients of the group action are not essential to the result: only the
existence of an expansion of families of solutions matters.

Proof of theorem 6.The solutiony(x) in the statement of the theorem is constructed in
theorem 8, later.

From y, we construct the one-parameter family:

y2(x; ε) = −6

x
− 1

x
h
( ε
xk

)
using (5) for the inversionx 7→ ε1/k/x.

Letting ε→ 0, we find that−(6+h(0))/x = −(k+6)/2x must be a solution. We now
define

y1(x; ε) = −k + 6

x − ε .
The properties listed in the theorem are now readily verified. �

4. Instability of isolated poles

4.1. Results

Even though the construction of the perturbation expansion of solutions close to−6/x can
be made solely on the basis of the group action on solutions, the singularities which arise
by perturbation of simple poles are different for (1) and (2). We know that perturbation
series near a single pole do not allow an analytical description of confluence phenomena.
However, even though a function such as(x − a)−1 + (x − b)−1 is not jointly analytic in
x, a andb small, it is the logarithmic derivative of(x − a)(x − b) which is perfectly well
behaved. More generally, we show that a Cole–Hopf transformation provides an analytical
description of confluence phenomena in the Chazy equation.

More precisely, we have the following.

Theorem 7. For any constanta, equation (1) has precisely one solution of the form
y(x) = u′/2u with

u(x) = ex(1+ exw(ex))

wherew is analytic when its argument is small, andw(0) = a. Using transformations (5),
this solution generates a one-parameter family of perturbations of−6/x, with a natural
boundary shrinking to a point as the parameter vanishes. Their asymptotics at the boundary
are those suggested by the method of exponential corrections.

For equation (2), we have the following.

Theorem 8.Let a be a constant. Fork 6= 0 or 1, equation (2) has a unique solution of the
form

y(x) = x−1h(xk)

whereh is analytic when its argument is small,h(0) = (k− 6)/2, andh′(0) = a. If k = 2,
3, 4 or 5, this solution is rational. Using transformations (5), this solution generates a one-
parameter family of perturbations of−6/x, where all poles, except possibly one, cluster at
the origin as the parameter vanishes.
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Thus,−6/x is unstable; the next result shows that(k−6)/2x is stable, but−(k+6)/2x
is unstable.

Theorem 9.For k = 2, 3, 4 and 5, there is a three-parameter family of solutions of (2) which
contains the solution(k− 6)/2x. These parameters are in correspondence with the Cauchy
data at a nearby regular point. Solutions with leading term−(k+6)/2x, on the other hand,
are unstable under perturbation: they arise from the confluence of all singularities save one.

4.2. Remarks

(1) Since equation (14) below admits the discriminant modular form1 as a special solution
[30], theorem 7 provides a proof that1 is entirely determined by the first two terms of its
expansion in powers ofq = exp(2π ix). Its reduction to Fuchsian form implies, in particular,
a (perhaps new) recurrence relation on the coefficients of1, that is, on the Ramanujanτ
function. On the other hand, our proof does not make use of any properties of modular
forms, and therefore suggests that some of the phenomena found in the Chazy equation are
of wider significance.

(2) The existence of rational solutions and the observation that a Cole–Hopf
transformation simplifies some of the issues is found in Chazy [12].

4.3. Proofs

For clarity, some tedious but straightforward computations have been omitted; we sometimes
found it convenient to perform some of the verifications using a symbolic manipulation
package.

Proof of theorem 7.Let y be a solution of (2). Let

y = u′

2u
.

We find thatu satisfies

u3u(4) − 5u2u′u(3) − 3
2u

2u′′2+ 12uu′2u′′ − 13
2 u
′4 = 0. (14)

If u is a solution, so is

(cx + d)−12u

(
ax + b
cx + d

)
.

Since ex is an exact solution of this equation, we seek solutions of the form exv(ex). Note
thatu = exp(2bx) leads toy = b, that is, to constant solutions of (1).

We make the change of variablesz = ex , and letD := z d/dz = d/dx. This turns (14)
into a Fuchsian equation forv(z) = u(z)/z:
v3(D + 1)4v − 5v2(D + 1)v(D + 1)3v − 3

2v
2(D + 1)2v

+12v[(D + 1)v]2(D + 1)2v − 13
2 [(D + 1)v]4 = 0.

Letting v(z) = 1+ zw(z), we find thatw satisfies an equation of the form

(D + 1)3Dw = zG[z,w,Dw,D2w,D3w].

It follows that there is exactly one solution withw(0) = a, and that it is given by a
convergent series inz nearz = 0.

Coming back tox, we have obtained a solution of the desired form, given by a series
of exponentials which converges at least for Rex < −ρ for some finiteρ. We know in
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fact thatρ is equal to zero for the caseu = 1(ix). This completes the proof of the claims
regarding the family of exponential solutions.

Next, let us take the case when the solutiony has the real axis for a natural boundary,
to fix ideas.

Consider the transformation (5) generated byx 7→ εx/(x− iε), which maps the real axis
to the circle(0ε) of centreε/2 and radiusε. The solutiony(x) generates the one-parameter
family of solutions:

y(x; ε) = − 6

x − iε
− iε2

(x − iε)2
y

(
εx

x − iε

)
which are definedoutside(0ε). As ε → 0, we see that the natural boundary shrinks to a
point, and that the solutionsy(x; ε) converge, uniformly on any disk at positive distance
from the origin, to the solution−6/x.

However, the limitsε→ 0 andx → 0 do not commute; in fact,y(x; ε) is not defined
in a full neighbourhood ofx = 0 for all small values ofε.

This completes the proof of theorem 7. �

Proof of theorem 8.Let y be a solution of (2). Let

y = k − 6

2

u′

u
.

We find thatu satisfies

uu(4) − (k − 2)u′u′′′ + 3k(k − 2)

2(k + 6)
u′′2 = 0. (15)

If u is a solution, so is

(cx + d)12/(6−k)u
(
ax + b
cx + d

)
.

The first part of the theorem follows from general results on nonlinear Fuchsian equations.
Let us seeky in the form

y(x) = x−1(a + bz+ w(z)z2)

where z = xk, a = (k − 6)/2 and b is arbitrary. Lettingz d/dz = D, we find, after
substitution into the equation and some algebra, thatw satisfies an equation of the form

(D + 1)(k(D + 2)+ 1)(k(D + 2)− 1)w = zF [z,w,Dw,D2w].

It follows that there is precisely one solution of the formy = h(xk)/x if we specify
h(0) = (k − 6)/2 andh′(0) = b. This proves the first part of the theorem. Ifb = 0, we
find w ≡ 0.

Let us now focus onk = 2, 3, 4, 5. In each case, there is a polynomial solution of (15),
which generates the desired solutions using the SL(2) action [12]. In fact, we have

u = (x − a1) . . . (x − aN)
and

y(x) = 1

2
(k − 6)

N∑
j=1

1

x − aj =
(k − 6)

2x

∑
n>0

∑
j a

n
j

xn

with N = 1+ (k + 6)/(6− k) = 12/(6− k). Note thatu is analytic nearx = 0 even
when theaj tend to zero. The relation between linearized solutions and possible confluence
patterns is given by the following.
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Lemma 10.If we can choose the pole locations such thataj = ε1/mbj , where
∑
j b

q

j vanishes
for q < m, but is non-zero ifq = m, then

y(x; ε) = −6

x
+ constant× ε

x1+m (1+ o(1)).
In other words, we have a resonance at−m. Since the possible pole locations are obtained
by applying homographic transformations to the zeros of a fixed function, not all pole
configurations are possible.

The lemma follows by direct computation.
If all the poles are equal to zero, we recovery = −6/x; if they are all zero except

for one which we let tend to infinity, we obtain the solution−(k + 6)/x. If all poles but
one are sent to infinity, we obtain the solution(k − 6)/x. It is apparent that the first two
solutions are unstable.

Let us now show that there cannot be any other type of confluence. Assume that there
is a family of homographic transformations, depending on a parameterε, under which two
distinct polesa1 anda2 tend to zero while two other polesa3 anda4 remain fixed at non-zero
(distinct) locations. We do not restrict the location of any additional poles. The anharmonic
ratio of (a1, a2, a3, a4) tends to one. However, it is also independent ofε; it is therefore
identically equal to one. This implies thata1 = a2 for all ε: a contradiction. Therefore, if
there is such a confluence, all poles except one at most, must cluster at the same point.

Proof of theorem 9.The stability statements have already been proved in the course of the
proof of the previous theorem. Since the solution(k − 6)/2x has two positive resonances,
namely 1 andk, we expect to be able to conclude using theorem 1. There are, in fact,
no logarithms in the pole expansion, but this does not follow from theorem 7, which
only generates a one-parameter solution corresponding to the resonancek: to generate the
complete solution, we need to check that the resonance 1 is compatible. It is convenient
to do so using the group action. More precisely, the solutiony = x−1h(xk) generates the
solutions

− 6ε

1+ εx +
h(xk/(1+ εx)k)
x(1+ εx)

which contain the additional parameterε. Adding the translation parameter, we obtain a
three-parameter family to which theorem 1 applies; this completes the proof. �
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